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We use theoretical principles to study how complex networks are topologically organized at large scale.
Using spectral graph theory we predict the existence of four different topological structural classes of net-
works. These classes correspond, respectively, to highly homogenous networks lacking structural bottlenecks,
networks organized into highly interconnected modules with low inter-community connectivity, networks with
a highly connected central core surrounded by a sparser periphery, and networks displaying a combination of
highly connected groups �quasicliques� and groups of nodes partitioned into disjoint subsets �quasibipartites�.
Here we show by means of the spectral scaling method that these classes really exist in real-world ecological,
biological, informational, technological, and social networks. We show that neither of three network growth
mechanisms—random with uniform distribution, preferential attachment, and random with the same degree
sequence as real network—is able to reproduce the four structural classes of complex networks. These models
reproduce two of the network classes as a function of the average degree but completely fail in reproducing the
other two classes of networks.

DOI: 10.1103/PhysRevE.75.016103 PACS number�s�: 89.75.Hc, 89.75.Fb, 02.10.Ox, 02.70.Hm

I. INTRODUCTION

Classification is usually part of the early stage of under-
standing science. It allows us to sort our data into unifying
categories in order to obtain a better understanding of their
meaning in a more efficient way. Complex networks are a
good example of systems which pervade different scientific
disciplines ranging from natural to technological and social
sciences �1–5�. Due in part to this abundance of complex
networks, as well as due to their strategic and scientific im-
portance, there are several possible classification schemes for
networks. These classification systems can be based on net-
work functionality or on network structure. For instance, a
“classical” division of networks into biological, social, infor-
mational, technological, and ecological clearly reflects the
functionality of these systems �3�. On the other hand, there
are several classification schemes based on network struc-
ture. For instance, complex networks can be classified ac-
cording to the existence or not of the “small-world” property
�6,7� or according to their degree distribution. The last clas-
sification permits classification of networks as “scale-free”
�8� if their node degree distribution decays as power-law,
“broad-scale” networks, which are characterized by a con-
nectivity distribution that has a power-law regime followed
by a sharp cutoff, or “single-scale” networks in which degree
distribution displays a fast decaying tail �9�. Even scale-free
networks have been classified into two different subclasses
according to their exponent in the power-law distribution of
the betweenness centrality �10�.

Each one of these classification schemes reproduces some
different characteristics of complex networks. “Small-
worldness” �6� and “scale-freeness” �8� reflect global organi-
zational principles of complex systems. The first character-
izes the relatively small separation among pairs of nodes and

the high cliquishness of some real-world networks �6�. The
second reproduces the presence of a few highly connected
hubs that stay glued in the vast majority of poorly connected
nodes in certain networks �8�. Both properties are of great
relevance in analyzing other important properties of complex
networks, such as disease propagation �11–13� or robustness
against targeted or random attacks �14–16�. However, there
are important organizational principles of complex networks
which escape the analysis of these global network character-
istics. The most relevant example is the existence of network
communities, which has lead to great efforts in finding such
structures in complex networks �17–22�.

Taking into account the community structure we can clas-
sify complex networks into those having a clear community
structure and those not having it. However, those networks
having a clear community structure can also be classified
according to the architectural organization of these commu-
nities in the network. For instance, it is possible that some
networks display several communities of highly intercon-
nected nodes which display very low intercommunity con-
nectivity. We can think of this network as dominated by a
few quasicliques �23�, i.e., the highly interconnected commu-
nities. Other networks can be characterized by a central com-
munity of highly interconnected nodes surrounded by one or
several communities forming a sparse periphery. Thus the
“communication” between nodes in the periphery is mainly
carried out by passing through the central core. We can think
of these networks as dominated by a set of nodes in the
periphery which are not close to those they are linked with,
forming a structure of quasibipartite communities �23�. Fi-
nally, it is possible that both types of communities exist in a
network forming a mixture of quasicliques and quasibipartite
modules, without a predominance of either of them over the
other.

In this work we consider the theoretical existence of dif-
ferent structural classes of networks and we introduce a
mathematical method to identify them on the basis of the
network spectra. Then, we show the existence of the four*Email address: estrada66@yahoo.com
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structural classes of complex networks predicted by the
theory in real-world systems by analyzing 61 networks rep-
resenting ecological, biological, informational, technologi-
cal, and social systems. Finally, we analyze how some of the
existing network growth models reproduce some, but not all,
of these classes of networks. We analyze the random genera-
tion of networks with uniform degree distribution, with pref-
erential attachment, and with the same degree sequence as
real-world networks.

II. PRELIMINARIES

Here we represent a complex network by a graph G
= �V ,E�, where V and E are the set of nodes and links, re-
spectively. Let G be a graph having N nodes. Then the adja-
cency matrix of G, A�G�=A, is a square, symmetric matrix
of order N, whose elements Aij are ones or zeroes if the
corresponding nodes are adjacent or not, respectively. This
matrix has N �not necessarily distinct� real-valued eigenval-
ues, which are denoted here by �1 ,�2 , . . . ,�N, and are as-
sumed to be labeled in a nonincreasing manner: �1��2
� . . . ��N. The set of eigenvalues of A together with their
multiplicities is denoted here as the spectrum of G. Let � j be
an orthonormal eigenvector corresponding to the eigenvalue
� j. Then, � j�i� designates the component of this eigenvector
corresponding to the ith node in the network. Through the
whole paper we will use base-10 logarithms designated as
log=log10.

In order to characterize the centrality of the nodes in a
network we have introduced a measure named the subgraph
centrality of a node, SC�i� �24�, which is based on the total
number of closed walks �CWs� in a network. A walk of
length l is any sequence of �not necessarily� different vertices
v1 ,v2 , ¯ ,vl ,vl+1 such that for each i=1,2 , ¯ , l there is an
edge from vi to vi+1. A CW of length l is a walk in which
vl+1=v1. This measure can be expressed as the sum of con-
tributions coming from even and odd CWs �25�. In this con-
text, the odd subgraph centrality of a complex network rep-
resents a weighted sum of the CWs of odd length starting
and ending in a node in which the longest walks receive
lower weights in the sum. We have shown that this measure
can be expressed in terms of the network spectrum in the
following way �24,25�:

SCodd�i� = �
j=1

N

�� j�i��2 sinh�� j� �1�

It is straightforward to realize that we can write expres-
sion �1� in the following form:

SCodd�i� = ��1�i��2 sinh��1� + �
j=2

N

�� j�i��2 sinh�� j� , �2�

where �1 and �1 are the principal �Perron-Frobenius� eigen-
value and eigenvector of the network, respectively. This ex-
pression can be represented in a logarithmic scale in the fol-
lowing form:

log �1�i� = 0.5 log�SCodd�i� − �
j=2

N

�� j�i��2 sinh�� j��
− 0.5 log�sinh��1�� �3�

This expression can be represented as a straight line in a
plot of log �1�i� versus log���1�i��2 sinh��1�	, with a slope of
0.5 and intercept of −0.5 log�sinh��1��. We have previously
found that there is a particular case in which �26�

��1�i��2 sinh��1� � �
j=2

N

�� j�i��2 sinh�� j� �4�

and
SCodd�i� 
 ��1�i��2 sinh��1� . �5�

For instance, this situation can happens when �1��2
� ¯ ��N. This is a characteristic of the good expansion
networks �GENs�, which are networks in which every subset
S of nodes �S�50% of the nodes� has a neighborhood that is
larger than some “expansion factor” � multiplied by the
number of nodes in S. A neighborhood of S is the set of
nodes which are linked to the nodes in S �27�. Formally, for
each vertex v�V �where V is the set of nodes in the net-
work�, the neighborhood of v, denoted as ��v� is defined as
��v�= �u�V��u ,v��E�	 �where E is the set of links in the
network�. Then, the neighborhood of a subset S�V is de-
fined as the union of the neighborhoods of the nodes in S:
��S�=�v�S��v� and the network has GE if ��v�
���S�∀S�V �27�. GENs show excellent communication
properties due to the absence of bottlenecks—a small set S
for which G \S has at least two large connected components.
We have shown that GENs are more robust to targeted at-
tacks than non-GEN networks irrespective of their degree
distribution �28�. It is known that a network having GE prop-
erties is characterized by a large spectral gap ��1−�2� �27�.
In particular, random regular networks are expected to have
big spectral gaps with high probability, and thus are GENs.
In the case in which the condition �5� is obeyed we will have
an “ideal” case of a network without bottlenecks and GE
properties, which displays a perfect spectral scaling between
log �1�i� and ln SCodd�i� �26�,

log �1
Ideal�i� = 0.5 log SCodd�i� − 0.5 log�sinh��1�� . �6�

III. THEORETICAL MODELS

Here we will consider the possibility that deviations from
the ideal behavior represented by Eq. �6� can occur. This
situation is present when the condition �4� is not perfectly
fulfilled. Then we can account for these deviations from ide-
ality by measuring the departure of the points from the per-
fect straight line respect to log �1

Ideal�i�:

	 log �1�i� = log
�1�i�

�1
Ideal�i�

= log � ��1�i��2 sinh��1�
SCodd�i�

0.5

�7�

According to the values of 	 log �1�i� there will be four
different classes of complex networks:
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Class I: Networks displaying perfect spectral scaling

	 log �1�i� � 0, ∀ i � V ⇒ ��1�i��2 sinh��1� � SCodd�i�;
�8�

Class II: Networks displaying spectral scaling with negative
deviations

	 log �1�i� � 0 ⇒ ��1�i��2 sinh��1� � SCodd�i�, i � V;

�9�

Class III: Networks displaying spectral scaling with positive
deviations

	 log �1�i� � 0 ⇒ ��1�i��2 sinh��1� � SCodd�i�, i � V;

�10�

Class IV: Networks displaying spectral scaling with mixed
deviations

	 log �1�p� � 0, p � V and 	 log �1�q� � 0, q � V .

�11�

We have previously analyzed the case for networks show-
ing a perfect spectral scaling, which, in general, correspond
to networks without topological bottlenecks, or in other
words to networks with GE properties �26�. Now, we will
consider the other theoretical possibilities of structural
classes of complex networks. First, we consider the case of
spectral scaling with negative deviations �class II�. Here, we
only need to consider the case where ��1�i��2 sinh��1�

 SCodd�i� because ��1�i��2 sinh��1�= SCodd�i� produces null
deviations from the perfect scaling, i.e., 	 log �1�i�=0.

Using expression �2� for SCodd�i� we obtain

��1�i��2 sinh��1� 
 ��1�i��2 sinh��1� + �
j=2

�� j�i��2 sinh�� j� ,

�12�

which obviously implies that

�
j=2

�� j�i��2 sinh�� j� � 0. �13�

Taking into account that we are considering networks
without self-loops, the adjacency matrix has zeroes along its
principal diagonal, which means that its spectrum must have
both positive and negative eigenvalues. Because �1�0 we
will designate by �+ and �− the sums corresponding to posi-
tive and negative eigenvalues for j�2. Then, we can write
the left part of inequality �13� as follows:

�
j=2

N

�� j�i��2 sinh�� j� = �
+

�� j�i��2 sinh�� j�

+ �
−

�� j�i��2 sinh�� j� . �14�

Now, we can rewrite the inequality �13� in terms of the
sums of positive and negative eigenvalues,

�
+

�� j�i��2 sinh�� j� + �
−

�� j�i��2 sinh�� j� � 0. �15�

Then, because �−�� j�i��2 sinh�� j�
0 we immediately ob-
tain the following new inequality:

��
+

�� j�i��2 sinh�� j�� � ��
−

�� j�i��2 sinh�� j�� . �16�

It is known from spectral clustering techniques that the
eigenvectors corresponding to positive eigenvalues give a
partition of the network into clusters of tightly connected
nodes �29–34�. On the contrary, the eigenvectors correspond-
ing to negative eigenvalues make partitions in which nodes
are not close to those which they are linked, but rather with
those with which they are not linked. In other words, the
nodes will be close to other nodes which have similar pat-
terns of connections with other sets of nodes, i.e., nodes to
which they are structurally equivalent �29–34�. In the case of
the eigenvectors corresponding to positive eigenvalues the
nodes corresponding to larger components tend to form qua-
sicliques. That is, clusters in which every two nodes tend to
interact with each other. On the contrary, for eigenvectors
corresponding to negative eigenvalues, nodes tend to form
quasibipartites, i.e., nodes are partitioned into disjoint sub-
sets with high connectivity between sets but low internal
connectivity.

Accordingly, the inequality ��+�� j�i��2 sinh�� j��
� ��−�� j�i��2 sinh�� j�� is telling us that the corresponding
network is dominated by partitions into quasicliques more
than into quasibipartites. In other words, these networks are
characterized by two or more clusters of highly intercon-
nected nodes which display a low intercluster connectivity. A
simple model illustrating these topological characteristics
can be created from a highly connected network having one
or more holes. For the sake of simplicity we will consider a
small network with only one central hole. In this case the
clusters formed at the four corners of the network display
large internal connectivity because they were created from a
highly connected network. However, the intercluster connec-
tivity is dramatically reduced due to the presence of the cen-
tral hole in the network. In Fig. 1�a� we illustrate this model,
where we can see that the network effectively displays nega-
tive deviations in the spectral scaling �Fig. 1�b��. In the Fig.
1�c� we have plotted the eigenvectors corresponding to the
second and third largest eigenvalues �positive eigenvectors�,
and in Fig. 1�d� the same plot is illustrated for the two largest
negative eigenvectors. As can be seen, the topological struc-
ture of this network is “dominated” by the presence of qua-
sicliques more than for the presence of quasibipartites. This
is observed by a clear presence of well-defined, highly inter-
connected clusters in Fig. 1�c� and the absence of a clear
structure of quasibipartites in Fig. 1�d�.

The idea of plotting the 2nd and 3rd largest �positive�
eigenvectors as well as the two largest negative ones is jus-
tified by the following known facts �31�. First, the compo-
nents of the largest positive eigenvector of the adjacency
matrix of a network have the same sign. If the network is
regular they will have also the same value. However, the
second largest eigenvector, which is orthonormal to the first
eigenvector, will have both positive and negative compo-
nents. In a similar way, the third largest positive eigenvector
will have a different pattern of positive and negative signs,
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and so forth. Then if we arrange the rows and columns of the
adjacency matrix according to the signs of the first and sec-
ond largest eigenvectors we will obtain a partition of this
matrix into biants. These biants correspond to the partition of
the network into clusters of highly interconnected nodes, i.e.,
quasicliques. The use of sign patterns of further eigenvectors
will partition the matrix into quadrants, octants, etc. At the
end, the sign patterns of the last two eigenvectors, the two
largest negative ones, we will obtain a partition of the net-
work in n-tants, in which nodes are closer to those with
which they are not linked, i.e., quasibipartites.

Now we can follow a similar procedure for the networks
with positive deviations of the spectral scaling �class III�.
After the same algebraic manipulations we arrive at the fol-
lowing expression analogous to �16�:

��
+

�� j�i��2 sinh�� j�� 
 ��
−

�� j�i��2 sinh�� j�� . �17�

According to this inequality the topological organization
of the nodes/links in these networks is “dominated” by the
negative eigenvalues. This means that networks in the struc-
tural class III are characterized by the dominance of quasi-
bipartites more than of quasicliques. Then, we can elaborate
a model explaining the general features of these networks by
considering a central core of highly interconnected nodes
surrounded by a periphery of nodes displaying low connec-
tivity with the central core and among themselves. This
model corresponds to the contrary case of the model for net-
works in class II, as can be seen in Fig. 2�a�. In fact, these
networks display positive deviations in the spectral scaling,

as can be seen in Fig. 2�b�, and they are dominated by the
presence of quasibipartites �Fig. 2�d�� more than by quasi-
cliques �Fig. 2�c��.

Now it is obvious that when ��1�i��2 sinh��1�� SCodd�i�
�class I� the network is formed by a tightly connected ho-
mogenous cluster, which is characterized by the leading ei-
genvalue. This situation is very clear from the fact that
��1�i��2 sinh��1��� j=2

N �� j�i��2 sinh�� j�, indicating the pre-
dominance of one large quasiclique formed by almost all
nodes in the network.

On the contrary, the networks in class IV, which have a
mixture of positive and negative deviations, are character-
ized by a combination of both quasicliques and quasibipar-
tites, without the predominance of either structure over the
other. This situation can be represented by a network formed
by two highly interconnected parts linked directly by an
edge. On the one hand, the central nodes connecting both
highly interconnected clusters display larger connectivity to
all other nodes in the network than the one expected from
their local cliquishness, i.e., they display positive deviations
from the perfect scaling. On the other hand, the nodes on one
side of the graph are not well-connected to the nodes on the
other side, despite that they are internally highly connected.
Consequently, these nodes display negative deviations from
the perfect scaling.

We can quantify the degree of deviation of the nodes from
the ideal spectral scaling by accounting for the mean square
error of all points with positive and negative deviations in
the spectral scaling, respectively,

FIG. 1. �Color online� �a�
Model of network in class II con-
sisting of highly interconnected
clusters, e.g., the four corners of
the networks, which display low
intercluster connectivity due to the
central hole. �b� Spectral scaling
of the network in �a� showing
negative deviation from perfect
scaling �straight line�. The letters
on the points correspond to series
of nodes in the network as indi-
cated in the legend of this plot. �c�
Plot of the network �a� using the
second and third largest eigenvec-
tors of the adjacency matrix. �d�
Plot of the network �a� using the
largest negative eigenvectors of
the adjacency matrix.
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�+ =� 1

N+
�
+
�log

�1�i�
�1

Ideal�i��
and

�− =� 1

N−
�
−
�log

�1�i�
�1

Ideal�i�
� ,

where �+ and �− are the sums carried out for the N+ points
having 	 log �1�i��0 and for N− having 	 log �1�i�
0, re-
spectively.

IV. STRUCTURAL CLASSES OF REAL-WORLD
NETWORKS

We study here 61 real-world complex networks account-
ing for ecological, biological, protein secondary structures,
informational, technological, and social systems. The eco-
logical networks studied correspond to the following food
webs �7�: Benguela, Bridge Brook, Canton Creek, Chesa-
peake Bay, Coachella Valley, El Verde rainforest, Grassland,
Little Rock Lake, Reef Small, Scotch Broom, Shelf, Skip-
with Pond, St. Marks Seagrass, St. Martin Island, Stony, and
Ythan Estuary �1�, with and without parasites �2�. The bio-
logical networks correspond to the protein-protein interac-
tion networks �PINs� for Saccharomyces cerevisiae �yeast�
�23� and for the bacterium Helicobacter pylori �35�, and
three transcription interaction networks concerning E. coli,
yeast, and sea urchins and the neural network in C. elegans
�36�. The protein residue networks correspond to the proteins
with Protein Data Bank �PDB� codes 1aaf, 1gds, 1bmtA,
1afrA, 1alkA, 1aozA, 1gof, 1kit, 1qba, and 1bglA. In these

networks each residue is represented as a single node, cen-
tered on C� atoms. Then a contact map is represented by

taking a 7-Å cutoff radius �37�. The informational networks
include two semantic networks, one based on Roget’s The-
saurus of English �Roget� and the other on the Online Dic-
tionary of Library and Information Science �ODLIS� and
four citation networks: one consisting of papers published in
the Proceedings of Graph Drawing in the period 1994–2000
�GD�, papers published in the field of “Network Centrality”
�Centrality�, papers published or citing articles from Sciento-
metrics for the period 1978–2000 �SciMet�, and papers con-
taining the phrase “Small World” �38�. The technological
systems represented by networks correspond to three elec-
tronic sequential logic circuits parsed from the ISCAS89
benchmark set, where nodes represent logic gates and flip-
flops �36�, the airport transportation network in the US in
1997 �38�, the Internet at the autonomous systems �AS� level
as from April 1998 �39�, and five software networks: Abi,
Digital, MySQL, VTK, and XMMS �40�. Finally, the social
networks studied here include a network of the corporate
elite in the U.S. �41�, a scientific collaboration network in the
field of computational geometry �Geom�, inmates in prison,
injectable drug users �IDUs�, Zachary karate club, college
students on a course about leadership �38�, a sexual network
in Colorado Springs �42�, a collaboration between Jazz mu-
sicians �43�, the friendship ties among 31 physicians �Gales-
burg�, the friendship ties among the employees in a small
hi-tech computer firm which sells, installs, and maintains
computer systems �High Tech�, and a communication net-
work within a small enterprise �Saw Mill� �38�.

In Table I we illustrate the values of �− and �+ for the 61
real-world networks studied as well as their number of nodes

FIG. 2. �Color online� �a�
Model of network in class III con-
sisting of a highly interconnected
central core surrounded by a
sparser periphery. �b� Spectral
scaling of the network in �a�
showing positive deviation from
perfect scaling �straight line�. The
letters on the points correspond to
a series of nodes in the network as
indicated in the legend of this
plot. �c� Plot of the network �a�
using the second and third largest
eigenvectors of the adjacency ma-
trix. �d� Plot of the network �a� us-
ing the largest negative eigenvec-
tors of the adjacency matrix.
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TABLE I. Real-world complex networks studied in this work, their size �N�, number of links �E�, the
values of negative ��−� and positive ��+� departures from ideal spectral scaling and classification into the four
different classes found in this work.

No. Network N E �− �+ Class

Ecological

1 Benguela 29 191 6.3010−3 0.000 I

2 Coachella 30 241 7.1810−5 0.000 I

3 Skipwith 35 353 6.1610−5 0.000 I

4 St. Martin 44 218 1.1010−3 1.6010−3 I

5 St. Marks 48 218 5.0010−3 2.2010−3 I

6 Reef Small 50 503 0.000 4.3110−5 I

7 Bridge Brook 75 542 0.000 9.0010−3 I

8 Shelf 81 1451 0.000 6.7510−5 I

9 Ythan2 92 416 0.000 2.9210−3 I

10 Ythan1 134 593 1.1110−4 1.5010−3 I

11 El Verde 156 1439 4.5010−5 0.000 I

12 Little Rock 181 2318 3.7210−5 0.000 I

13 Scotch Broom 154 366 0.047 7.9010−3 II

14 Canton 108 707 0.000 0.183 III

15 Stony 112 830 0.000 0.219 III

16 Chesapeake 33 71 0.085 0.097 IV

17 Grassland 75 113 0.792 0.233 IV

Biological

18 Neurons 280 1973 3.8310−4 2.3210−5 I

19 PIN-1 2224 6608 0.142 2.3610−4 II

20 Trans Urchins 45 80 1.072 0.084 IV

21 Trans Ecoli 328 456 1.231 0.338 IV

22 Trans Yeast 662 1062 0.784 0.822 IV

23 PIN-2 710 1396 0.116 0.099 IV

Proteins

24 1aaf 55 119 2.499 4.4510−3 II

25 1gds 151 443 0.871 0.000 II

26 1bmtA 246 813 0.820 0.000 II

27 1afrA 345 1122 0.872 0.000 II

28 1alkA 449 1573 0.925 0.000 II

29 1aozA 552 1749 0.978 0.000 II

30 1gof 639 2208 1.072 0.000 II

31 1kit 757 2476 2.896 0.000 II

32 1qba 863 2928 1.619 0.000 II

33 1bglA 1021 3266 2.122 0.000 II

Informational

34 Centrality 118 613 9.5910−5 5.3010−5 I

35 Small World 233 994 3.7010−3 1.1110−4 I

36 ODLIS 2898 16376 4.0610−6 1.5710−5 I

37 Roget 994 3640 0.230 0.000 II

38 SciMet 2678 10368 0.102 4.5010−4 II

39 GD 49 635 0.467 0.041 IV

Technological

40 USAir97 332 2126 9.0410−5 0.000 I

41 Internet97 3015 5156 6.2110−4 1.2010−3 I

42 Internet98 3522 6324 1.5510−3 9.4410−4 I
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�N� and links �E�. Using the values of �− and �+ we have
classified these networks into the four different classes which
are predicted to exist from a theoretical point of view. We
have carried out a canonical discriminant analysis �CDA�
�44� for the 61 networks studied using log��−+10−3� and
log��++10−3� as classifiers, where the sum of the constant
10−3 is necessary to avoid indeterminacies due to zero val-
ues. In Fig. 3 we can see the main factors �roots� which
perfectly separate the networks studied into the four different
structural classes, which were predicted to exist theoretically.
The first root mainly separates networks in class I from those
in class IV, while root 2 makes the separation of these two
classes from classes II and III.

As can be seen in Table I and Fig. 3, we present here
empirical evidence for the existence of the four structural
classes of complex networks in real-world systems. Classes
I, II, and IV are equally represented among the 61 networks
studied, i.e., there are about 32% of networks in each of
these classes. On the contrary, there are only two networks in
class III, which correspond to the ecological systems of Can-
ton Creek and Stony Stream. In general, most ecological
networks correspond to class I �70%� and they represent the
only systems in which the four classes of networks are rep-
resented. Most biological networks studied correspond to
class IV �67%�, while all protein secondary structure net-
works correspond to class II. Informational networks are
mainly classified into two classes: class I �50%� and class II
�33.3%�. On the other hand, technological networks are
mainly in class IV �64%�, while 27% correspond to class I.
Social networks also display great homogeneity in their
structural classes as they correspond mainly to classes II and
IV �91%�.

According to the models we have created in the previous
section it is easy to understand the global topological char-
acteristics of the networks in every structural class. As can be
seen in Fig. 4�a� for the case of the food web of Coachella
valley, class I networks display large structural homogeneity.
They are characterized by the lack of structural bottlenecks
which separate large regions of the network by disconnecting
relatively few nodes/links, which definitively improves their
robustness to biodiversity loss �45�. In Fig. 4�b� we also
illustrate the perfect spectral scaling obtained for this net-
work.

Networks in class II are characterized by two or more
highly interconnected clusters which are connected to each

TABLE I. �Continued.�

No. Network N E �− �+ Class

43 MySQL 1480 4140 1.966 4.1410−4 II

44 Electronic1 122 189 0.594 0.808 IV

45 Digital 150 198 0.216 0.332 IV

46 Electronic2 252 399 0.753 0.737 IV

47 Electronic3 512 819 0.535 1.191 IV

48 VTK 771 1357 0.204 0.037 IV

49 XMMS 971 1802 1.450 0.105 IV

50 Abi 1035 1719 0.498 0.061 IV

Social

51 Jazz 1265 38356 1.0310−3 0.000 I

52 High Tech 33 91 0.108 6.7010−3 II

53 Drugs 616 2012 1.390 0.000 II

54 Corporate elite 1586 11540 0.053 0.000 II

55 Geom 3621 9461 0.452 0.000 II

56 Galesburg 31 67 0.279 0.079 IV

57 College 32 96 0.100 0.040 IV

58 Zachary 34 78 0.088 0.031 IV

59 Saw Mill 37 62 0.945 0.933 IV

50 Prison 67 142 0.261 0.119 IV

61 ColoSpring 324 347 0.837 0.764 IV

FIG. 3. �Color online� Plot of the two principal roots obtained in
the canonical discriminant analysis �CDA� of the 61 networks stud-
ied in this work and classified into four different structural classes.
Ellipses correspond to 95% of confidence in the CDA.
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other by relatively few nodes/links. The prototype of this
class of networks is the protein residue network. In Fig. 5 we
illustrate the structure of one representative residue network
corresponding to the human immunodeficiency virus type 1
�HIV-1� capsid protein �1 gds�. It is obvious from this figure
and in the general case that proteins are formed by highly
interconnected modules or motifs, formed by the secondary
structure elements, such as helices and sheets. There are also
some interactions between these motifs, which forms the
clusters of nodes �residues� with high internal connectivity.
However, the existence of cavities is known in proteins
�46–49�, which corresponds to the holes in our model for
class II networks. These holes can be seen in the cartoon
structure of the protein �Fig. 5�a�� as well as in the plot of the
second and third largest positive eigenvalues �Fig. 5�c��,
which is clearly dominating over the structure formed by
plotting the largest negative eigenvalues �Fig. 5�d��. The cor-
responding spectral scaling displays clear characteristics of
networks with negative deviations, which correspond to class
II �Fig. 5�b��. In addition, we have explored the spectral scal-
ing of 595 protein residue networks and we have obtained
the same characteristics for all these networks, which will be
published elsewhere.

The class III of networks is characterized by a highly
connected central core surrounded by a sparsely connected
periphery. These are the least abundant networks in our
dataset as they are represented only by two food webs. How-
ever, we think that further explorations of larger pools of
real-world complex networks can show the existence of these
networks in other complex systems. In Fig. 6�a� we illustrate
the network for the Canton food web, represented in a way
that we can observe the highly dense core and the sparser

FIG. 4. �Color online� �a� Illustration of a network with good
expansion properties corresponding to the Benguela food web. �b�
Perfect spectral scaling of the Benguela food web indicating typical
characteristics of class I networks.

FIG. 5. �Color online� �a� Car-
toon representation of the struc-
ture of human immunodeficiency
virus type 1 �HIV-1� capsid pro-
tein �1gds�. �b� Spectral scaling of
this protein residue network show-
ing negative deviations from per-
fect scaling, which are character-
istic of class II networks. �c� Plot
of the protein residue network us-
ing the second and third largest
eigenvectors of the adjacency ma-
trix. �d� Plot of the protein residue
network using the largest negative
eigenvectors of the adjacency
matrix.
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periphery as well as its spectral scaling �Fig. 6�b��. The struc-
ture of this network is clearly dominated by the formation of
quasibipartites over the formation of quasicliques, as can be
seen from Figs. 6�d� and 6�c�, respectively.

The networks in class IV are characterized by the pres-
ence of both quasicliques and quasibipartites without a pre-
dominance of any of them over the other. This situation is
illustrated in Fig. 7 for the social network of Saw Mill �Fig.

FIG. 6. �Color online� �a� Net-
work representing the Canton
Creek food web illustrating its
core-periphery structure. �b� Spec-
tral scaling of the Canton food
web showing positive deviation
from perfect scaling �straight
line�. �c� Plot of the Canton food
web network using the second and
third largest eigenvectors of the
adjacency matrix. �d� Plot of the
Canton food web network using
the largest negative eigenvectors
of the adjacency matrix.

FIG. 7. �Color online� �a� Net-
work representing the Saw Mill
social network. �b� Spectral scal-
ing of the Saw Mill social network
showing positive and negative de-
viation from perfect scaling
�straight line�. �c� Plot of the Saw
Mill social network using the sec-
ond and third largest eigenvectors
of the adjacency matrix. �d� Plot
of the Saw Mill social network us-
ing the largest negative eigenvec-
tors of the adjacency matrix.
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7�a��, where we can see the spectral scaling having both
positive and negative deviations �Fig. 7�b�� and that the to-
pological structure of the network is dominated by neither
positive �Fig. 7�c�� nor negative eigenvalues �Fig. 7�d��.

Another interesting characteristic of the community orga-
nization in complex networks can be extracted from the
present study. As can be seen in Fig. 3, with the exception of
the networks of residue interactions in proteins, there is not a
clear definition of community structure as a function of the
broad functional categories in which these networks are
grouped. For instance, the communities in biological, social,
or technological networks are not always structurally orga-
nized in the same way and these networks appear classified
in more than one structural class.

V. FORMATION OF NETWORKS OF DIFFERENT
CLASSES

A natural question that arises from the observation of the
different classes of networks existing in natural and man-
made complex systems is “what are the evolving mecha-
nisms giving rise to the different classes of networks?” We
do not pretend to answer this question exhaustively in this
work. Instead we will investigate whether some of the exist-
ing theoretical models for network formation are able to re-
produce the characteristics of networks in the structural
classes found here. In particular, we investigate the random
network growing model giving rise to networks with uniform
degree distributions and the Barabási–Albert �BA� model
�8,50�. In both models each random network starts with m
nodes and new nodes are added consecutively in such a way
that a new node is connected to exactly m of the already
existing nodes, which are chosen randomly. The new edges
are attached according to the probability distribution used,
e.g., uniform distribution for the uniform model and the pref-
erential attachment mechanism in the BA model.

We have studied random networks generated by these two
growing mechanisms having n=1000 nodes by changing
systematically the value of m from 2 to 8. For every value of
m we have generated 100 random networks. Then, we have
averaged the values of �− and �+ for every value of m. In Fig.
8 we illustrate the plot of �− and �+ in logarithmic scale for
both growing mechanisms. We can see that the networks
generated by both growing mechanisms which have low av-
erage degree m�3 correspond to class IV. As the value of m
increases a transition occurs in the network structure, giving
rise to class I networks for values of m�4 �BA model� or
m�5 �uniform model�. In the case of the uniform growing
model for m=4 we obtained some networks showing char-
acteristics of class II networks. This sounds reasonable by
considering that the average degree of the real-world net-
works in class II are around a value of 3.3. However, the
networks obtained in this case by the growing models are
more in the borderline of the transition than clearly in one or
another class. In addition, we have to say that the average
degree cannot be used as a rule of thumb for classifying
real-world networks into the different structural classes
found here. For instance, despite that most networks in class
I display very large average degree, there are other networks

in this class, such as Internet 1997 and 1998, which have
very low average degrees, i.e., �k�=1.71 and �k�=1.79, re-
spectively. Thus, we will further explore the evolution of
networks in class II using real-world networks.

In closing, we have seen here that these two mechanisms
for growing networks mainly reproduce the characteristics of
one single class of networks, i.e., class I for all m�5. Only
for the limited cases of networks with very low average de-
gree �m�3� it is possible to obtain networks in class IV.
However, neither of both growing models is able to clearly
generate networks in classes II and III. The results obtained
in this work showing that the BA growing model mainly
generates networks with GE properties is expected from pre-
vious theoretical results. For instance, Gkantsidis et al. �51�
have shown using arguments from max-flow min-cut theory
that networks obeying power-law degree distribution have
good expansion properties, in that they allow routing with
O�N log2 N� congestion, which is close to the optimal value
of O�N log N� achieved by regular expanders.

The next step in our analysis is to study how the degree
distribution can determine the structural class of a complex
network. In this case we study four real-world networks per-
taining to the different structural classes found in this work.
They are the network of Centrality literature �class I�, the
protein residue network 1aozA �class II�, the food web of
Stony stream �class III�, and the electronic circuit 1 �class
IV�. Then, we generate 100 random networks having the
same number of nodes, the same average degree and the
same degree sequence as the corresponding real-world net-
work by using the Mfinder computer software �52�. Using
the spectral scaling information for these randomly generated
networks we calculate the values of �− and �+. In Table II we
give the results of these calculations where we can see that
the random models with the same degree sequence of the

FIG. 8. Change in the deviations from perfect scaling ��− and
�+� of random networks generated by two growing mechanisms
with the change in the number of starting nodes �m�. Uniform cor-
responds to random networks generated to follow a uniform degree
distribution. BA corresponds to random networks generated by a
Barabási–Albert preferential attachment mechanism. The plot is
represented on the space of topological network classes found in
this work and the logarithms are base 10.
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real-world networks reproduce very well the structural char-
acteristics of the networks in classes I and IV. The Centrality
network �class I� displays an average degree of �k�=5.19 and
an exponential degree distribution. On the other hand, Elec-
tronic1 �class IV� has �k�=1.55 and uniform degree distribu-
tion. As we previously observed in both cases—large �k�
�class I� and low �k� �class IV�—results are well reproduced
by growing models based on uniform random networks or on
a preferential attachment model. However, neither of the net-
works in classes II and III are well reproduced by the grow-
ing method based on the same degree sequences. In the case
of the protein residue, the random network with the same
degree sequence displays a structure characteristic of class
IV networks instead of class II. In the other case, the random
network having the same degree sequence than Stony food
web is predicted to be on class I instead of class III. These
results confirm our previous findings that the existing grow-
ing mechanisms for generating random networks do not re-
produce the characteristics features of real-world networks in
classes II and III. These random network models, however,
are useful in reproducing the structure of complex networks
in classes I and IV, which in some extension depends on the
degree sequence and the average degree of these networks.
Consequently, there is need for new theoretical models
which reproduce the topological structures of real-world
complex networks in all structural classes found in this work.
Recently, Jungsbluth et al. �53� have also questioned whether
random-network models, such as Erdös–Rényi, Small-World,
and BA, really reflect all important properties of the real
world, indicating that network models have to be more spe-
cific for each application.

VI. CONCLUSIONS

In this work we have found that there are four theoreti-
cally possible topological structures of complex networks.
We have used a first-principles approach based on spectral
graph theory to predict the existence of these topological
structural classes. The first of such classes corresponds to
networks displaying good expansion properties. That is, net-
works in which nodes and links are homogeneously distrib-

uted through the network in such a way that there are not
structural bottlenecks. The other three classes correspond to
different organizations of the community structure in the net-
works. For instance, class II corresponds to networks in
which there are two or more communities of highly intercon-
nected nodes which display low intermodule connectivity. In
class III the networks display a typical “core-periphery”
structure characterized by a highly interconnected central
core surrounded by a sparser periphery of nodes. Finally,
there are networks �class IV� displaying a combination of
highly connected groups �quasicliques� and some groups of
nodes partitioned into disjoint subsets �quasibipartites�, with-
out a predominance of any of both structures.

The method developed in this work, which is based on the
spectral scaling approach, permits not only clear and effec-
tive differentiation among these types of networks but also
understanding of the structural characteristics giving rise to
these different topological organizations. Consequently, we
have identified the existence of the four classes of networks
in real-world systems by studying a large pool of networks
representing ecological, biological, informational, techno-
logical, and social systems. While classes I, II, and IV are
equally populated, each having about 32% of the total net-
works, class III is less frequent and only appeared in two
ecological networks. We finally have explored the possible
growing mechanisms determining the structural classes ob-
served in this work. We found that a random growing mecha-
nism giving rise to uniform distributions of node degrees and
the preferential attachment mechanism of Barabási-Albert re-
produces very well the characteristics of networks in group I
when the average degree is larger than 5. For sparser net-
works, such as those having average degree lower than 3,
both mechanisms reproduce the characteristics of networks
in class IV. However, neither of both growing mechanisms
are able to reproduce the topological organization of net-
works in classes II and III. Similar results are obtained when
generating random networks with the same degree sequence
than real-world networks. Our results confirm previous find-
ings about the necessity of investigating new growth mecha-
nisms for generating networks to model real-world systems.
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�0.006�

IV

Stony 0.000 0.219 III 2.5210−5

�3.1610−5�
2.8310−5

�2.9910−5�
I

Electronic1 0.594 0.808 IV 0.390
�0.223�

0.724
�0.112�
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